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(S,S)-2,3-Bis(diphenylphosphinoyl)butane, an immediate
precursor of (S,S)-CHIRAPHOS, can be obtained with 70%
de and 71% op via double asymmetric hydrogenation of
2,3-bis(diphenylphosphinoyl)buta-1,3-diene in the presence
of Ru–(S)-BINAP catalysts.

Recently, we have described a new strategy for the synthesis of
Chiraphos,1† a well-known bidentate chiral ligand for asym-
metric catalysis. The key step of the synthesis is the diastereo-
selective hydrogenation of 2,3-bis(diphenylphosphinoyl)-
buta-1,3-diene 1 which affords a pair of enantiomers (R,R)- and
(S,S)-2 and the meso species (R,S)-2. This latter isomer is
useless, therefore its formation must be avoided in order to
remove the need for a difficult purification step. In the
previously reported synthesis,1 a racemic mixture of (R,R)- and
(S,S)-2 was obtained in ca. 70% yield by reacting 1 with
NaBH4. Using this reducing agent, ca. 30% of meso-2 was also
produced, but was promptly separated and discarded since it
forms an insoluble adduct with one molecule of NaOH and one
molecule of NaBH4.1

The recent improvements achieved in asymmetric hydro-
genation2 by means of homogeneous chiral transition metal
catalysts prompted us to investigate the direct synthesis of
enantiopure (R,R)-2 or (S,S)-2 by hydrogenation of 1 in the
presence of an asymmetric catalyst (Scheme 1).

Interest in this subject goes beyond the synthetic application
envisaged here since, although a large number of reports
concerned with asymmetric reduction of monoenes have been
published, only a few examples of asymmetric reduction of
dienes have appeared so far.3 Further interest is added by the
peculiar nature of 1.

Two different Ru-BINAP complexes, i.e. [RuCl(p-cym-
ene){(S)-BINAP}]Cl4 and [Ru(OAc)2{(S)-BINAP}],5 were
tested as catalysts. The relevant data, together with the reaction
conditions, are reported in Table 1.

The reactions were carried out in a magnetically stirred
stainless steel autoclave. The product’s composition was
determined by NMR spectroscopy, since in previous studies we
found that all the species which may form during the reaction
(see Scheme 1) give well-separate signals in the 31P NMR
spectrum.1

When only the stereoisomers of 2 were present into the crude
reaction mixture, the enantioselectivity of the reaction was
determined by polarimetry on samples recrystallized from

benzene/n–hexane to remove the catalyst.6 In the case of runs 1
and 4, owing to the presence of the chiral intermediate 3, a
catalyst-free sample of the crude reaction mixture was treated
with (1S)-(+)-camphorsulfonic acid to form inter alia the
corresponding (S,S)-2–(1S)-(+)-camphorsulfonic and (R,R)-
2–(1S)-(+)-camphorsulfonic adducts. The enantioselectivity of
the reaction was then calculated by integration of their relevant
resonances in the 31P NMR spectrum.7

Both catalysts require rather severe reaction conditions to
carry out the hydrogenation. With [RuCl(p-cymene){(S)-
BINAP}]Cl the hydrogenation of 1 proceeds with complete

Table 1 Hydrogenation of 2,3-bis(diphenylphosphinoyl)buta-1,3-diene 1 with Ru–BINAP catalystsa

Yield (%)

Run Catalyst T/°C t/h 3 (R,S)-2 (S,S)-2 + (R,R)-2 Op 2 (%)b

1 [RuCl(p-cymene){(S)-BINAP}]Clc 50 216 53 0 47 0
2 [RuCl(p-cymene){(S)-BINAP}]Clc 100 120 0 0 100 8
3 [Ru(OAc)2{(S)-BINAP}]d 100 67 45 10 45 NDe

4 [Ru(OAc)2{(S)-BINAP}]d 100 163 18 13 69 68
5 [Ru(OAc)2{(S)-BINAP}]d 100 310 — 15 85 71
a MeOH (15 ml), substrate (2.0 mmol), P(H2) = 100 atm. b In all cases the prevailing configuration is (S,S)-2. c Substrate/Ru = 120. d Substrate/Ru = 10.
e Not determined.

Scheme 1 Reagents and conditions: i, H2, catalyst; ii, HSiCl3, NEt3.
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diastereoselectivity since no meso-2 is formed. Surprisingly,
operating at 50 °C in the presence of this catalyst, a racemic
mixture of 2 is obtained, while working at 100 °C a modest
induction is observed (run 2). This rather unusual enhancement
of the enantioselectivity on increasing the reaction temperature
suggests that different catalytic species are actually at work; an
example of such behaviour has been previously reported in the
literature.8

With [Ru(OCOCH3)2{(S)-BINAP}] lower reaction rates are
obtained. Thus, even at 100 °C and using a substrate/catalyst
ratio of 10, long reaction times are necessary to achieve
complete hydrogenation of diene 1 (run 5). Most significant is
that the reaction proceeds with good diastereo- (de = 70%) and
enantio-selectivity [the op of the prevailing (S,S)-2 isomer is
71%]. Presumably the PNO bond is acting as a co-ordinating
group in the reaction, rather as an amide does in the
hydrogenation of acylamino acrylates.9,10

Concerning the reaction mechanism, there are two possible
pathways for the hydrogenation of the diene 1 (Scheme 1): (i)
two consecutive 1,2-hydrogen additions; (ii) an initial 1,4-hy-
drogen addition to give (cis or trans) 4 followed by hydro-
genation of the remaining double bond.

At shorter reaction times (runs 3 and 4) only 2 and 3 are
detected in the reaction mixture, suggesting that the reaction
proceeds via two consecutive 1,2-hydrogen additions; moreover
it appears that the first double bond hydrogenation is faster than
the second one. On the other hand, an independent experiment
showed that a pure sample of 411 is not hydrogenated in the
presence of [Ru(OCOCH3)2{(S)-BINAP}] under the conditions
in Table 1.

In conclusion, even if the process is not yet ready for practical
application owing to the incomplete stereoselectivity this work
demonstrates the possibility of employing the asymmetric
catalysis in the synthesis of a chiral diphosphine. According to
this strategy a chiral ligand could be synthesised using another
chiral phosphine ligand, thus giving a new example of chiral
amplification.
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